CARBON ALKYLATIONS OF $\alpha.\alpha$ - AND $\alpha.\beta$ -DOUBLY DEPROTONATED NITROALKANES Dieter Seebach^{*}, Rainer Henning^{a)}, Friedrich Lehr^{a)} and Jutta Gonnermann

Institut für Organische Chemie der Justus-Liebig-Universität, Heinrich-Buff-Ring 58 D-6300 Gießen

(Received in UK 14 February 1977; accepted for publication 21 February 1977)

We have recently shown that primary nitroalkanes $(R-CH_2-NO_2)$ can be deprotonated twice in the α -position to give <u>1</u> which - in contrast to simple nitronates $(R-CH=NO_2^{\Theta})$ is C-acylated in good yields¹⁾. If there is only one α -nitro-CH as in 2-nitro propane, the α . β -doubly deprotonated reagent <u>2</u> is formed²⁾; the same is true when additionally acidifying groups are present in the β -nitro position as in 2-aryl-1-nitroethane $(\rightarrow \underline{3})^{2}$. A hitherto unpublished example of this latter type of dianion derived from a nitroalkane is

<u>4</u> which is readily formed from methyl β -nitro-propionate³⁾ and two moles of lithium diisopropylamide under conditions (THF/HMPT 5:1, -78°C, 1h) similar to those used for the generation of <u>1</u>-3^{1,2)}. In view of the synthetic potential^{1,2,4)} of these novel nucleophilic reagents we report here their successful C-alkylation with alkyl halides and α . β -unsaturated carbonyl compounds.

Secondary nitroalkanes from 1: In our previous experiments¹⁾ we were only able to alkylate 1, $R=C_6H_5S$, while simple nitroalkanes did not give products 6. Obviously, the use of concn. HCl for protonation of the primarily formed nitronate 5 had caused a

a) Part of the projected dissertations of R.H. and F.L., Universität Gießen

<u>Nef</u>-reaction. We now found, that reaction of <u>1</u> with alkyl halides (45 min -90° to -78° C, 14 h -78° to $+15^{\circ}$ C) and subsequent addition of a fourfold molar excess of glacial acetic

Тέ	ab.	le	1
----	-----	----	---

alkyl halide (R'X)	alkylation product 6			
reacted with 1	R	R'	yield [%]	$\binom{OC}{D}$ mp. $\begin{bmatrix} OC \end{bmatrix}$
1-iodo-hexane	Н	C ₆ H ₁₃ -	35	1.4274 ²²
benzyl bromide	C ₂ H ₅	C _e H ₅ -CH ₂ -	53	1.5098^{22}
1-iodo-hexane	C ₂ H ₅	С ₆ Н ₁₃ -	51	1.4292^{23}
benzyl bromide	C ₅ H ₁₁	C ₆ H ₅ -CH ₂ -	60	1.4990^{22}
1-iodo-ethane	C ₅ H ₁₁	С ₂ н ₅ -	50	1.427022
1-bromo-pentane	C ₆ H ₅	C ₅ H ₁₁ -	80	1.5015^{22}
benzyl bromide	C ₆ H ₅	C ₆ H ₅ -CH ₂ -	75	35
1-iodo-ethane	C ₆ H ₅	С ₂ н ₅ -	80	1.5132^{22}
1.5-dibromo-pentane	C ₆ H ₅	Br(CH ₂) ₅ -	40 ^{a)}	1.5360 ²²

a) Besides this "mono-product" a 30% yield of 1.7-dinitro-1.7-diphenyl-heptane was isolated.

 $acid^{5}$ (-90^oC) before aqueous workup leads to secondary nitroalkanes in yields ranging from 35 to 80% (see table 1). Thus, as in acylations¹⁾, the reagents <u>1</u> are powerful carbon-nucleophiles-quite different from simple nitronates which are normally O-alkylated.

Alkylations of 2, 3, and 4: Addition of benzyl bromide to a solution containing 2^{2^2} gave 3-nitro-1-phenyl-butane (7a, table 2), the ß-benzylation product of 2-nitro propane, while 1-iodo hexane did not produce the corresponding alkylated compound. 3, the hexylation and benzylation of which was already described²⁾, combines with α . β -unsaturated carbonyl compounds in a Michael-addition (\rightarrow 7b, 7c, 7d, table 2). The β -nitro propionic acid derivative 4 could be benzylated as well as alkylated with primary and secondary alkyl

Table 2

dilithio derivative	electrophile	product of type $\frac{7}{2}$ or $\frac{8}{2}$	yield %	physical or spectro- scopic data
2	benzyl bromide	$\frac{7a}{16}$ H ₅ C ₆ NO ₂	40	$n_{\rm D}^{22}$ = 1.5103
<u>3</u> (aryl=C ₆ H ₅)	cyclohexenone	<u>7b</u> (see formula <u>10a</u>)	49	m.p. 126 [°] C ^{a)}
	cinnamaldehyde	$\frac{7c}{C_6H_5}$		m.p. 205-206 ⁰ C ^{a)}
	benzal acetophe- none	$\frac{7d}{C_6H_5}$	45	m.p. 210 ⁰ C ^{a)}
<u>4</u> b)		H3COOC NO2		
	iodo methane	<u>7e</u> , R=CH ₃	74	b.p.85 ⁰ C/2mm
	1-iodo octane	$\frac{7f}{R}$, $R=n-C_8H_{17}$	81	b. p. 105° C/0. 1mm $n_{D}^{22} = 1.4460$
	2-iodo propane	<u>⁷g</u> , R=CH(CH ₃) ₂	78	b. p. 100° C/1. 8mm n_{-}^{21.5} = 1.4391
	benzyl bromide	$\frac{7h}{R}$, $R=C_6H_5CH_2$	80	D b.p. $130^{\circ}C/0.2mm$ $n_{D}^{22} = 1.5145$
		7 <u>i</u> COOCH ₃		b.p.170 ⁰ C/0.5mm
4	1.iodo methane 2.LDA ^{c)} 3.benzyl bromide ^{d)}	8a H₃C CH₂C6H₅ H₃COOC NO₂	78	b. p. 120° C/0.13mm n_{D}^{22} = 1.5140
	1. iodo ethane 2. LDA ^{C)} 3. allyl bromide ^{d)}		62	b.p. 95 ⁰ C/0.5mm n _D ²⁰ = 1.4577

a) Mixture of two diastereomers. b) After addition of the alkylating reagent at -78° C the temperature was raised within 3h to -30° C before workup. c) For this deprotonation of a monoalkylated derivative a reaction time of 3h between -78° C and -30° C is required. d) Reaction time 15h at -15° C (freezer). e) b. p. = bath temperatures upon micro distillation.

iodide to give in high yields products $\underline{7e}-\underline{h}$ (see table 2); it also furnished the <u>Michael</u>adduct $\underline{7i}$ to cyclohexenone. The monoalkylated methyl $\underline{\$}$ -nitro propionates can be converted once more to dianions of type $\underline{4}$ and alkylated. This leads to the $\alpha.\alpha$ -disubstituted nitro esters <u>8a</u> and <u>8b</u> (table 2). The structures of the products <u>6</u>, <u>7</u>, and <u>8</u> thus obtained are fully compatible with all spectral data; their elemental analyses were correct within 0.3%.

The nucleophiles 2-4 can be described by the resonance formula 9 and may thus be regarded as enamines² or Li₂O-adducts to ene-nitroso derivatives (C=C-N=O). Their products 10 with electrophiles (E^{\oplus}/H^{\oplus}) are synthetic counterparts of nucleophile

 (Nu^{Θ}/H^{Θ}) adducts <u>11</u> to nitroolefins <u>12</u> [umpolung of nitroalkene reactivity⁶], cf. <u>10a</u> (=<u>7b</u> of table 2), the adduct of <u>3</u> to cyclohexenone with <u>11a⁴</u>], obtained from cyclohexanone enolate and an ω -nitro styrene].

Acknowledgment: We thank the Fonds der Chemischen Industrie and the BASF AG (Ludwigshafen) for generous support and a stipend to J.G..

References and footnotes

- 1) D.Seebach and F.Lehr, Angew.Chem. <u>88</u>, 540 (1976); Angew.Int.Ed.Engl.<u>15</u>, 505 (1976), and references cited therein.
- 2) R. Henning, F. Lehr, and D. Seebach, Helv. Chim. Act. 59, 2213 (1976).
- Prepared form commercially available β-nitro-propionic acid and CH₃OH/H₂SO₄;
 b. p. 61°C/0.7mm [Lit.: b.p.68°C/1mm; V.M.Belikov, Izvest.Akad. Nauk SSR, Otdel. Khim. Nauk 1956, 855; C.A.51, 1837i (1957)].
- 4) D. Seebach, H. F. Leitz, and V. Ehrig, Chem. Ber. 108, 1924 (1975).
- 5) As recommended by N.Kornblum and G.E.Graham, J.Amer.Chem.Soc. 73, 4041 (1951).
- 6) For recent examples of <u>Michael-additions</u> (cf. 2 and 3) to nitroolefins see ref.⁴) and: D.Seebach and V.Ehrig, Angew.Chem. 86, 446 (1974); Angew.Chem.Int.Ed.Engl.13, 401 (1974); Chem.Ber. 108, 1961 (1975). Nucleophilic addition to ethyl-ß-nitro-acrylate (cf. 4) see J.W.Patterson and J.C. McMurry, J.Chem.Soc., Chem.Commun. 1971, 488.